在基因组序列中是较短的三字母密码子,1000种物种中有9种确实含有这种氨基酸

图片 1

图片 2

生物体的所有细胞都在其细胞核中含有DNA拷贝。为了实现其中包含的说明,必须将该DNA复制到RNA分子中,该RNA分子到达核糖体,然后核糖体读取该信息并合成蛋白质。

四个字母–A,C,G和T–代表在DNA中存储信息的四个化学基础。这些相同的四个字母的序列以特定顺序重复,在遗传上定义了生物体。在基因组序列中是较短的三字母密码子,代表20种常用氨基酸中的一种,其中三种可能的64个三字母密码子保留用于终止信号。这些氨基酸是蛋白质的基本成分,具有无数的功能。例如,氨基酸丙氨酸可由三字母密码子GCU表示,氨基酸半胱氨酸由三字母密码子UGU表示。在一些生物体中,通常表示蛋白质编码基因末端的三字母密码子UGA被劫持以编码一种称为硒代半胱氨酸的稀有遗传编码氨基酸。

形成蛋白质的密码子,animo酸三联体是核糖体需要知道如何产生每种蛋白质的标志物,是这种转变过程的关键。共有61个编码20个氨基酸的密码子和3个在翻译过程中起停止信号的密码子。

2016年3月16日在线发表在期刊Angewandte Chemie International
Ed。来自美国能源部联合基因组研究所(DOE
JGI),美国能源部科学用户设施办公室和耶鲁大学的研究人员发现,微生物识别出一个以上的硒代半胱氨酸密码子。这一发现增加了最近研究的可信度,这些研究表明生物体的遗传词汇不像长期持有的那样受到限制。

然而,某些生物使用额外的氨基酸,硒代半胱氨酸,称为第21个氨基酸,缺乏自己的密码子并在修饰后使用终止密码子。为此,它利用复杂的机器,特定的酶和RNA;对于电池来说,这个过程可能会非常昂贵。但为什么?这种氨基酸在蛋白质中有什么作用?为什么它存在于人类和其他脊椎动物中,而另一方面,其他物种却失去了它?现在,来自哈佛医学院(美国)的CRG校友Marco
Mariotti和Vadim N. Gladyshev以及Gustavo
Salinas的巴塞罗那科学技术学院巴塞罗那科学与技术学院的基因组调控中心(CRG)的研究人员来自乌拉圭共和国大学,对这些问题有所了解。

这项工作是2014年两份出版物的后续行动;JGI小组发表的一篇科学论文发现,有些生物解释了三种终止密码子,这种密码子终止翻译,意味着除了。耶鲁大学合成生物学实验在Angewandte
Chemie International
Ed。论文揭示了一个令人惊讶的事实,即大肠杆菌中的几乎所有密码子都可被硒代半胱氨酸取代。这就提出了一个问题,即自然界是否也会出现同样的现象。

在之前的研究中,我们发现硒代半胱氨酸的机制在进化过程中已经多次丢失,我们开始关注为什么它在某些群体中如此容易消失,而在其他群体中则不然,ICREA研究教授托尼解释道。
Gabaldn,CRG比较基因组学组负责人。

获取JGI的巨大资源使我们能够快速测试我的研究项目所产生的具有挑战性的假设,这些假设得到了DOE
Basic Energy Sicences和美国国立卫生研究院的长期支持,Dieter
Soll,Sterling教授说。耶鲁大学化学系分子生物物理学和生物化学教授,该论文的第一作者。从而产生了富有成果的合作;合并后的团队在国家生物技术信息中心和DOE
JGI的综合微生物基因组(IMG)数据管理系统中扫描了数万亿个碱基对的公共微生物基因组和未组装的宏基因组数据,以找到细菌和噬菌体中的终止密码子重新分配。

真菌是唯一一个从未发现过具有硒代半胱氨酸的物种的生物王国,研究人员决定将重点放在它们上,利用最近在公共访问数据库中发表的一千种真菌基因组。在对它们进行分析时,他们发现,正如他们在自然微生物学杂志上发表的文章中所报道的那样,1000种物种中有9种确实含有这种氨基酸。

从大约6.4万亿碱基的宏基因组序列和25,000个微生物基因组中,该团队确定了几种识别终止密码子UAG和UAA的物种,以及10个有义密码子,作为硒代半胱氨酸密码子UGA的可接受变体。

这对我们来说是一个惊喜,因为没有真菌被认为有硒代半胱氨酸,Gabaldn说道,这解释了为什么他们发现的九种物种确实属于相对无序的真菌群,这些真菌在早期阶段分化。真菌的进化,这意味着当这些群体的更多基因组被测序时,我们可能会发现更多的硒代半胱氨酸病例。

研究小组报告说,研究结果开启了我们对其他编码方案可能存在的思考……总的来说,我们的方法提供了新的证据,证明遗传密码的可塑性有限但毫不含糊,其秘密仍隐藏在大多数未测序的生物体中。

他们用这种氨基酸鉴定的真菌的祖先也有它。某些谱系保留了它,而其他谱系则丢失了它,其他生物体也可能如此。还有待回答的问题是为什么它会在某些生物体中丢失,而在其他生物体中这些基因是必不可少的,Gabaldn说。了解为什么硒代半胱氨酸在真菌和生命树的其他分支中很重要,这可以帮助我们理解为什么它对我们的物种如此重要,并确定什么使硒对人类健康至关重要,他总结道。

这一发现还说明了遗传密码的上下文依赖性,准确地读取代码(和解释DNA序列)并最终编写DNA(合成序列以在生物能源或环境科学中执行定义的功能)将需要研究DNA的语言超过了入门课程的水平。

相关文章

This entry was posted in 热点汇总 and tagged , . Bookmark the permalink.

发表评论

电子邮件地址不会被公开。 必填项已用*标注